Construction Of Hadamard Matrices From Certain Frobenius Groups

نویسندگان

  • M. K. Singh
  • P. K. Manjhi
چکیده

Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited. Global Journal of Computer Science and Technology Volume 11 Issue 10 Version 1.0 May 2011 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) ISSN: 0975-4172 & Print ISSN: 0975-4350

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hopf Algebras and Biunitary Matrices

Actually to any spin model one can associate a vertex model (this is clear from V. Jones’ initial interpretation – in terms of statistical mechanics – of these objects) and the construction of Hopf algebras from complex Hadamard matrices is a particular case of the construction of Hopf algebras from biunitary matrices. The construction of Hopf algebras from biunitary matrices is a particular ca...

متن کامل

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

Constructions of Complex Hadamard Matrices via Tiling Abelian Groups

Applications in quantum information theory and quantum tomography have raised current interest in complex Hadamard matrices. In this note we investigate the connection between tiling of Abelian groups and constructions of complex Hadamard matrices. First, we recover a recent very general construction of complex Hadamard matrices due to Dita [2] via a natural tiling construction. Then we find so...

متن کامل

The Quaternary Complex Hadamard Conjecture of order 2 n

ABSTRACT: In this paper, a complete construction of quaternary complex Hadamard matrices of order 2 n is obtained using the method of Sylvester construction and Williamson construction. Williamson construction has been generalized to obtain any kind of Hadamard matrices (Complex or Real Numbers). Non-equivalent family of Hadamard Matrices can be obtained using the Generalized Williamson constru...

متن کامل

Circulant Hadamard Matrices

Note. The determinant of a circulant matrix is an example of a group determinant, where the group is the cyclic group of order n. In 1880 Dedekind suggested generalizing the case of circulants (and more generally group de­ terminants for abelian groups) to arbitrary groups. It was this suggestion that led Frobenius to the creation group of representation theory. See [1] and the references therein.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011